This paper develops a k-generation risk contagion model in a tree-shaped network for cyber insurance pricing. It accounts for contagion location and security level heterogeneity. Using Bayesian network principles, it derives mean and variance of aggregate losses, aiding accurate cyber insurance pricing. Key findings benefit risk managers and insurers.
top of page
Rechercher
Posts récents
Voir tout“As analysts are primary recipients of these reports, we investigate whether and how analyst forecast properties have changed following...
00
This study proposes a new method for detecting insider trading. The method combines principal component analysis (PCA) with random forest...
00
Cyber risk classifications often fail in out-of-sample forecasting despite their in-sample fit. Dynamic, impact-based classifiers...
30
bottom of page
Comments