The paper addresses challenges in risk assessment from limited, non-stationary historical data and heavy-tailed distributions. It introduces a novel method for scaling risk estimators, ensuring robustness and conservative risk assessment. This approach extends time scaling beyond conventional methods, facilitates risk transfers, and enables unbiased estimation in small sample settings. Demonstrated through value-at-risk and expected shortfall estimation examples, the method's effectiveness is supported by an empirical study showcasing its impact.
top of page
Rechercher
Posts récents
Voir tout“As analysts are primary recipients of these reports, we investigate whether and how analyst forecast properties have changed following...
00
This study proposes a new method for detecting insider trading. The method combines principal component analysis (PCA) with random forest...
00
Cyber risk classifications often fail in out-of-sample forecasting despite their in-sample fit. Dynamic, impact-based classifiers...
30
bottom of page
Comments