This paper discusses the limitations of traditional #asset#liability#management (#alm) techniques in #riskmanagement, particularly in high-interest rate environments, and proposes the application of #deep#reinforcement#learning (#drl) to overcome these limitations. The paper defines the components of #reinforcementlearning (#rl) that can be optimized for ALM, including the RL Agent, Environment, Actions, States, and Reward Functions. The study shows that implementing DRL provides a superior approach compared to traditional ALM, as it allows for increased #automation, flexibility, and multi-objective #optimization in ALM.
top of page
Rechercher
Posts récents
Voir tout“As analysts are primary recipients of these reports, we investigate whether and how analyst forecast properties have changed following...
00
This study proposes a new method for detecting insider trading. The method combines principal component analysis (PCA) with random forest...
00
Cyber risk classifications often fail in out-of-sample forecasting despite their in-sample fit. Dynamic, impact-based classifiers...
30
bottom of page
Comments