top of page
Rechercher
Photo du rédacteurHélène Dufour

Bayesian Mixed-Frequency Quantile Vector Autoregression: Eliciting Tail Risks of Monthly Us GDP

This paper proposes a novel mixed-frequency quantile vector autoregression (MF-QVAR) model that uses a #bayesian framework and multivariate asymmetric Laplace distribution to estimate missing low-frequency variables at higher frequencies. The proposed method allows for timely policy interventions by analyzing conditional quantiles for multiple variables of interest and deriving quantile-related #riskmeasures at high frequency. The model is applied to the US economy to #nowcast conditional quantiles of #gdp, providing insight into #var, Expected Shortfall, and distance among percentiles of real GDP nowcasts.


2 vues0 commentaire

Posts récents

Voir tout

Comments


bottom of page