"Bayesian estimates from experimental data can be influenced by highly diffuse or "uninformative" priors. This paper discusses how practitioners can use their own expertise to critique and select a prior that (i) incorporates our knowledge as experts in the field, and (ii) achieves favorable sampling properties. I demonstrate these techniques using data from eleven experiments of decision-making under risk, and discuss some implications of the findings."
top of page
Rechercher
Posts récents
Voir tout“As analysts are primary recipients of these reports, we investigate whether and how analyst forecast properties have changed following...
00
This study proposes a new method for detecting insider trading. The method combines principal component analysis (PCA) with random forest...
00
Cyber risk classifications often fail in out-of-sample forecasting despite their in-sample fit. Dynamic, impact-based classifiers...
30
bottom of page
Comments