"#frauddetection is overwhelmingly associated with the greater field of #anomalydetection, which is usually performed via unsupervised learning techniques because of the lack of labeled data needed for #supervisedlearning. However, a small quantity of labeled data does often exist. This research article aims to evaluate the efficacy of a deep semi-supervised anomaly detection technique, called Deep SAD, for detecting #fraud in high-frequency #financialdata."
top of page
Rechercher
Posts récents
Voir tout“As analysts are primary recipients of these reports, we investigate whether and how analyst forecast properties have changed following...
00
This study proposes a new method for detecting insider trading. The method combines principal component analysis (PCA) with random forest...
00
Cyber risk classifications often fail in out-of-sample forecasting despite their in-sample fit. Dynamic, impact-based classifiers...
30
bottom of page
Comentarios