This paper explores optimal insurance contracting for a decision maker facing ambiguous loss distributions. Using a p-Wasserstein ball around a benchmark distribution and a convex distortion risk measure, the indemnity function and worst-case distribution are derived. Numerical examples highlight the sensitivity of worst-case distributions to model parameters.Distributionally robust insurance under the Wasserstein distance
top of page
Rechercher
Posts récents
Voir tout“As analysts are primary recipients of these reports, we investigate whether and how analyst forecast properties have changed following...
00
This study proposes a new method for detecting insider trading. The method combines principal component analysis (PCA) with random forest...
00
Cyber risk classifications often fail in out-of-sample forecasting despite their in-sample fit. Dynamic, impact-based classifiers...
30
bottom of page
Comments