This paper proposes a #credit#portfolio approach for evaluating #systemicrisk and attributing it across #financialinstitutions. The proposed model can be estimated from high-frequency credit default swap (#cds) data and captures risks from publicly traded #banks, privately held institutions, and coöperative banks. The approach overcomes limitations of earlier studies by accounting for correlated losses between institutions and also offers a modeling extension to account for #fattails and #skewness of #assetreturns. The model is applied to a universe of banks in #europe, highlighting discrepancies between the #capitaldequacy of the largest contributors to systemic risk and less systemically important banks.
top of page
Rechercher
Posts récents
Voir tout“As analysts are primary recipients of these reports, we investigate whether and how analyst forecast properties have changed following...
00
This study proposes a new method for detecting insider trading. The method combines principal component analysis (PCA) with random forest...
00
Cyber risk classifications often fail in out-of-sample forecasting despite their in-sample fit. Dynamic, impact-based classifiers...
30
bottom of page
Kommentare