The study explores an insurance company managing financial risk through reinsurance, aiming to optimize terminal wealth and minimize ruin probability. Using neural networks, it finds the optimal reinsurance strategy based on expected utility and a modified Gerber-Shiu function, illustrated by a numerical example involving a Cramér-Lundberg surplus model.
top of page
Rechercher
Posts récents
Voir tout“As analysts are primary recipients of these reports, we investigate whether and how analyst forecast properties have changed following...
00
This study proposes a new method for detecting insider trading. The method combines principal component analysis (PCA) with random forest...
10
Cyber risk classifications often fail in out-of-sample forecasting despite their in-sample fit. Dynamic, impact-based classifiers...
40
bottom of page
コメント