Insurers face complex risk dependencies in loss reserving. Additive background risk models (ABRMs) offer interpretable structures but can be restrictive. Estimation challenges arise in models without closed-form likelihoods. Using a modified continuous generalized method of moments (CGMM), comparable to Maximum Likelihood Estimation (MLE), addresses these challenges in certain loss reserving models, including stable distributions.
top of page
Rechercher
Posts récents
Voir tout“As analysts are primary recipients of these reports, we investigate whether and how analyst forecast properties have changed following...
00
This study proposes a new method for detecting insider trading. The method combines principal component analysis (PCA) with random forest...
00
Cyber risk classifications often fail in out-of-sample forecasting despite their in-sample fit. Dynamic, impact-based classifiers...
30
bottom of page
コメント