The framework presents a method to quantify #uncertainty propagation in #dynamic #scenarios, focusing on discrete #stochastic processes over a limited time span. These dynamic uncertainty sets encompass various uncertainties like distributional ambiguity, utilizing tools like the Wasserstein distance and $f$-divergences. Dynamic robust #risk #measures, defined as maximum #risks within uncertainty sets, exhibit properties like convexity and coherence based on uncertainty set conditions. $f$-divergence-derived sets yield strong time-consistency, while Wasserstein distance leads to a new non-normalized time-consistency. Recursive representations of one-step conditional robust risk measures underlie strong or non-normalized time-consistency.
top of page
Rechercher
Posts récents
Voir tout“As analysts are primary recipients of these reports, we investigate whether and how analyst forecast properties have changed following...
00
This study proposes a new method for detecting insider trading. The method combines principal component analysis (PCA) with random forest...
00
Cyber risk classifications often fail in out-of-sample forecasting despite their in-sample fit. Dynamic, impact-based classifiers...
30
bottom of page
Comments