2 résultats pour « airisks »

A New Approach to Measuring AI Bias in Human Resources Functions: Model Risk Management

Companies use #ai tools for #hr decisions, but they face a balance between benefits and #risks. With limited federal #regulation and complex state laws, employers seek guidance. The #model#riskmanagement#mrm framework, adapted from #finance, aids in managing #airisks for #employment choices. Proportionality lets employers adjust validation to risks and tech changes. Objective analysis and a competent MRM team ensure AI tools align with design and legal requirements, fostering trust and #compliance.

Measuring Ai Safety

This paper addresses the challenges associated with the adoption of #machinelearning (#ml) in #financialinstitutions. While ML models offer high predictive accuracy, their lack of explainability, robustness, and fairness raises concerns about their trustworthiness. Furthermore, proposed #regulations require high-risk #ai systems to meet specific #requirements. To address these gaps, the paper introduces the Key AI Risk Indicators (KAIRI) framework, tailored to the #financialservices industry. The framework maps #regulatoryrequirements from the #euaiact to four measurable principles (Sustainability, Accuracy, Fairness, Explainability). For each principle, a set of statistical metrics is proposed to #measure, #manage, and #mitigate #airisks in #finance.