9 résultats pour « algorithms »

Hybrid Machine Learning Algorithms for Risk Assessment in Insurance Industry: Empirical Review

#machinelearning #algorithms are increasingly for #riskassessment in the #insuranceindustry, with hybrid methods often outperforming individual ones. Research has identified challenges such as tackling imbalanced datasets, selecting features, and improving interpretability. Newer methods such as #deeplearning and ensembles may further improve accuracy.

Regulating AI at work: labour relations, automation, and algorithmic management

These papers examine the role of #collectivebargaining and #governmentpolicy in shaping strategies to deploy new #digital and #ai-based technologies at work. The authors argue that efforts to better #regulate the use of AI and #algorithms at work are likely to be most effective when underpinned by social dialogue and collective #labourrights. The articles suggest specific lessons for #unions and policymakers seeking to develop broader strategies to engage with AI and #digitalisation at work.

Using Knowledge Distillation to improve interpretable models in a retail banking context

Date : Tags : , , , , ,
" Predictive machine learning algorithms used in banking environments, especially in risk and control functions, are generally subject to regulatory and technical constraints limiting their complexity. Knowledge distillation gives the opportunity to improve the performances of simple models without burdening their application, using the results of other - generally more complex and better-performing - models."

Uncovering The Source of Machine Bias

Date : Tags : , , , , ,
"By comparing the decisions output by diverse settings, we find that ML algorithms can mitigate both the preference-based bias and the belief-based bias, while the effects vary for new and repeated applicants. Based on our findings, we propose a two-step human-AI collaboration framework for practitioners to reduce decision bias most effectively."