Cybersecurity investment models often mislead practitioners due to unreliable data, unverified assumptions, and false premises. These models work under idealized conditions rarely seen in real-world settings, so practitioners should carefully adapt them, recognizing their limitations and avoiding strict reliance on their recommendations.
Explainable AI (XAI) is becoming increasingly important, especially in fields like fraud detection. Differentiable Inductive Logic Programming (DILP) is an XAI method that can be used for this purpose. While DILP has scalability issues, data curation can make it more applicable. While it might not outperform traditional methods in terms of processing speed, it can provide comparable results. DILP's potential lies in its ability to learn recursive rules, which can be beneficial in certain use cases.
This study analyzes tone consistency in bank risk disclosures from regulatory Pillar 3 reports and annual IFRS reports. Findings indicate that optimistic P3 tones enhance annual report informativeness, while pessimistic tones can obscure it.
The paper examines climate litigation's growing impact on banks, noting limited current effects but a projected increase. Key risks include reputational damage and influences on risk management and investment decisions. Banks are urged to address climate litigation risks proactively to enhance resilience, with future research suggested on mitigation strategies.
Effective risk management requires understanding aggregate risks, individual business unit riskiness, and systemic risks. Realistic models must consider complex phenomena like heterogeneous marginals and excess kurtosis. A modified individual risk model using Multivariate Stable Distributions addresses these challenges, enabling tractable aggregation, dependence analysis, and Tail Conditional Expectation calculations for aggregate risks.
The paper explains Artificial Intelligence (AI), focusing on Generative AI, its role in finance, and its differences from Machine Learning. It covers AI’s applications in financial forecasting, risk management, and decision-making, while addressing benefits, challenges, regulations, and ethical concerns. It offers practical advice for adopting AI technologies in financial operations.Generative Artificial Intelligence for Finance Professionals
Insurers face complex risk dependencies in loss reserving. Additive background risk models (ABRMs) offer interpretable structures but can be restrictive. Estimation challenges arise in models without closed-form likelihoods. Using a modified continuous generalized method of moments (CGMM), comparable to Maximum Likelihood Estimation (MLE), addresses these challenges in certain loss reserving models, including stable distributions.
“Our findings underscore the critical role of comparability in enhancing financial decision-making, boosting investment efficiency, and mitigating ESG-related risks, offering valuable insights for corporate governance and strategic decision-making.”
“We consider optimal allocation problems with Conditional Value-At-Risk (CVaR) constraint. We prove, under very mild assumptions, the convergence of the Sample Average Approximation method (SAA) applied to this problem, and we also exhibit a convergence rate and discuss the uniqueness of the solution. These results give (re)insurers a practical solution to portfolio optimization under market regulatory constraints, i.e. a certain level of risk.”
This study proposes an attention-based ensemble model for detecting credit card fraud, integrating classifiers' predictions using two aggregation operators (DOWA and IOWA). The model, which selects key features via a bootstrap forest, achieves 99.95% accuracy and a perfect AUC of 1, demonstrating the effectiveness of AI in fraud detection.